
AD-A249 326

VERIT

A Unified Framework
for Systematic Loop Transformations

Lee-Chung Lu and Marina Chen

YALEU/DCS/TR-816
October, 1990

S092-9999
______" .9..._____ \3flIU- ...

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

92 4 20 oa3

Statement A per telecon A -c, 4 .Or
Dr. Richard Lau ONR/Code 1111 ut.4'

Arlington, VA 22217-5000 P_

NWW 5/1/92

' il -and/or

Dist I Speeial

Yale University
Department of Computer Science

A Unified Framework
for Systematic Loop Transformations

Lee-Chung Lu and Marina Chen

YALEU/DCS/TR-816
October, 1990

This work has been supported in part by the Office of Naval Research under Contract
N00014-89-J-1906, N00014-90-J- 1987.

A Unified Framework for Systematic Loop Transformations

Lee-Chung Lu and Marina Chen

Department of Computer Science
Yale University

P.O. Box 2158 Yale Station
New Haven, CT 06520
lu-lee-chung@yale.edu

Abstract and statement reordering. This framework also
includes more general classes of loop transforma-

This paper presents a formal mathematical tions which can extract more parallelism from a
framework which unifies the existing loop trans- class of programs than the existing techniques.
formations. This framework also includes more The particular class of programs are those that
general classes of loop transformations, which consist of perfectly nested loops possibly with
can extract more parallelism from a class of pro- conditional statements where the guards as well
grams than the existing techniques. We classify as the array index expression are affine expres-
schedules into three classes: uniform, subdomain- sions of the loop indices.
variant, and statement-variant. Viewing from In the next section. we describe the notations
the degree of parallelism to be gained by loop and terminologies used in the paper. We then
transformation, the schedules can also be classi- present a formal mathematical framework which
fled as single-sequential level, multiple-sequential unifies the existing loop transformation tech-
level, and mixed schedules. We also illustrate the niques, and sets the stage for discussing the more
usefulness of the more general loop transforma- general classes of loop transformers in Section 3.
tion with an example program. A loop transformer is a function that relates a

given loop nest with its transformed version, and

1 Introduction consists of two parts: a spatial morphism, and
a temporal morphism, called a schedule. Next,

One of the central issues in restructuring com- in Section 4, we classify schedules, by the prop-

piler is to discover parallelism automatically and erties of uniformity, into three classes: uni-

generate correct parallel control structures that form, subdomain-variant, and statement-variant.

can take advantage of the large number of pro- Viewing from the degree of parallelism to be

cessors. The advent of massively parallel ma- gained by loop transformation, the schedules

chines opens up opportunities for programs that can also be classified as single-sequential level,

have large-scale parallelism to gain tremendous multiple-sequential level, and mixed schedules.

performance over those that do not. We also describe the functional forms of the

This paper presents a formal mathematical schedules for each class. Existing loop transfor-

framework which unifies the existing loop trans- mation techniques are given as examples of these

formations such as loop interchanging [1, 2, 17, classes of schedules.

191 permutation [31, skewing [17, 191, reversal, Due to the limited space, please refer to [12]
the wavefront method [7, 9, 10, 11, 13, 14, 15], for the algorithms for obtaining the more gen-

eral classes of schedules. The problem formula-
'in Proceedings of the Third ACM SIGPLAN Sympo- tions for obtaining these schedules are based on

sium on PPOPP, April 1991.

1

dependence index pairs, which provide more de- the d-dimensional vector space over rationals.
pendence information than dependence vectors. Throughout the paper, we let I = (il,... , id)

Since there are many such pairs that need to and J = (jj,...,jd). With the domain and tu-
be considered, and they can be infinitely many ple notations, Loop Nest 1 can be rewritten as
when the loop bounds are unknown at compile follows:
time, we need to rely on a technique called poly- DO (I:D) {
hedra decomposition [8, 15] to manage the com-
plexity of the algorithm. In addition, nonlinear body }

programming and bounded enumerative search In this paper, we focus on sequential loop nests
are required to obtain optimal schedules. The which are perfectly nested. We use the following
complexity of nonlinear programming is reduced loop nest as a generic example throughout the
by using fast heuristics and linear programming paper, where D is a d dimensional index domain
as described in [12], which obtain optimal sched- and 71a] is an expression containing a:
ules for most cases. Loop Nest L (Generic Loop Nest)

Finally, we illustrate the usefulness of the more
general loop transformations with an example DO (I:D) {
program in Section 5. Versions of the trans-
formed program using different schedules are im-
plemented on a Connection Machine CM/2. The $i : IF(P 1) A(X(I)) =

difference in performance, which is essentially ...
due to the available parallelism determined by S2 IF(P2) B(Z(I)) = r[A(Y(I))]
the schedule, can amount to two orders of mag-
nitude. "

Data Dependence We now define depen-
2 Definitions and Terminolo- dence between statements. Let S, and $2 be

gies two statements of a program. A flow dependence
exists from S1 to S2 if S1 writes data that can

Throughout this paper, programming examples subsequently be read by S 2. An anti-dependence
are written in a Fortran-like notation although exists from S to S2 if S1 reads data that S2 can
the transformation techniques also apply to func- subsequently overwrite. An output dependence
tional languages. exists from S1 to S2 if S writes data that S 2

can subsequently overwrite. We use the nota-

Index Domains Let [a, b] be an interval do- tion S =* S2 to denote a dependence from S to

main of integers from a to b. We define an index 52.

domain D (also called an iteration space in [17]) Consider Loop Nest L. For statement S2 to
of a d-level perfectly nested loop compute the value B(Z(J)) at iteration J, the

Loop Nest 1 value A(Y(J)) is needed. If A(Y(J)) is com-
puted from statement S, at iteration I, i.e.

DO (ii = lutul){ Y(J) = X(I), then we say S2 at iteration J is

flow dependent on S at iteration I, denoted byDO (...){S 1@I* S2 J.

DO (id = ld, Ud) {

body } 11 3 Formalizing Loop Transfor-

to be the Cartesian product [11, u1 x ... x [lid, Ud] mation
of d interval domains [lk, Uk] for 1 < k < d.

For the purpose of formulating loop trans- We now formalize the notion of loop transforma-
formations, we consider D to be a subset of tion from a source loop nest to a target paral-

2

lel loop nest. A loop transformer is a function g:D -- E, such that for all dependences S1 I

defined over the Cartesian product of the itera- S 2AJ, condition g(J) - g(I) >" 0 holds. In other
tion space of the loop nest and the set of state- words, a domain morphism will never reverse the

ments in the body of the loop that relates a given ordering imposed by dependence relations.
loop nest with its transformed version. From In this paper, we restrict the codomain E of
the standpoint of symbolic transformation of the a domain morphism to be a cross product of a
program text, a loop transformer can be decom- temporal index domain El and a spatial index
posed into two components: the first component, domain E 2 , i.e. E = El x E 2. Under this re-

c led domain morphism, defines how the itera- striction, all parallel loops are innermost loops
tion space should be mapped to a new one (with in the transformed loop nest. We define g, and

new loop bounds and possibly new predicates g2 to be two functions:

guarding the loop body), and the second com-
ponent, called statement reordering function, de- g, : D -+ E1

fines the ordering of the statements in the trans- (called a temporal morphism), and
formed loop nest. The process of obtaining a

loop transformer, however, suggests another de- 92 : D - E2

composition: a temporal morphism and a spatial (called a spatial morphism).
morphism.

Under domain morphism g, index I in the orig-

3.1 Loop Transformer and Schedule inal loop will be mapped to index J = g(I) in the
transformed loop nest. Since g is bijective, it has

Kinds of Index Domains For the purpose a well-defined inverse, denoted by g- '. Clearly,
of loop transformation, it is useful to indicate I = g-'(J). The following loop nest

how the index domain shall be interpreted. We Loop Nest 2
do this by defining kinds of index domains. The
kind of an interval domain D can be either spatial DO ((I:D)) {
or temporal. The kind of a product domain is the
product of the kinds of the component domains. ... A(X(I)) ... I
For example, D1 x D 2 is of kind temporalxspatial will be transformed into the following new loop
if D, is of kind temporal and D 2 is of kind spa-
tial. A single-level loop with a temporal index nest under domain morphism
domain corresponds to a sequential loop (i.e. g:D - E1 x E2 :
DO), while a spatial index domain corresponds Loop Nest 3
to a parallel loop (i.e. DOALL).

DO ((Ji:Ei)){

Lexicographical Ordering We use the fol- DOALL ((J 2 :E2)){
lowing notations to denote lexicographical order- ... A(X(g-'(Ji : J 2))) ... } }
ing on elements X and Y of an n-dimensional
index domain. We define "-<" to be the lexico- where (Jj : J 2) denotes the concatenation of two
graphical ordering: we say X -< Y if there exists vectors J, and J2.
k, 1 < k < n, such that Zj = yj for all 1, 1 < k, The requirement of g to be surjective is in
and Xk < Yk. Similarly, we say X --< Y if X -< Y fact not essential. For any injective function
or xk = A- for all k, 1 < k < n. We use 6 to 9:D - E, we can always derive a corresponding
denote the zero vector. bijective function g:D -- {g'(I) I I E D} from

D to the image of D under g' [61. Therefore, by

Domain Morphism We define a domain allowing the codomain of a bijective function to
morphism to be a bijective function y from in- be the image of an injective function, we allow a

dex domain D to index domain E, denoted by much more general class of functions to be used

3

as domain morphism. For comparison, the uni- 3.2 Overall Procedure to Obtain a
modular transformations discussed in [4, 16] are New Loop Nest
special classes of bijective functions. The gener-
ality does require some nontrivial algebraic ma- Finding a schedule r is to understand what is
nipulation to generate correct loop bounds and the potential parallelism that can be extracted
predicates to guard the conditional statements in from the source program. The algorithms for
the transformed loop nest. An automatic trans- obtaining a schedule ir is presented in [12]. The
formation procedure for doing this based on an so-called strip mining [17] and tiling [16, 18] of

equational theory is described in [6]. loops axe captured by the spatial morphism g2.
Given a schedule 7r = (gl, r), the choice of g2,
which depends on factors such as memory and

statement reordering L et Senoe ds processor organization and communication cost,
statement reordering. Let S denote the set of should keep a loop transformer h = (gl, g2, r) in-

ment reordering to be a function h from the set jective. A default 92, which is used in the rest ofmen rerdeingto e afuntio h romthesetthis paper, can be g2 (i1 ,... .,i) = (ip1 ,.. ip)

of statements to the set of statement labels: "=
so as to result in a loop transformer h that is

r:S , [0, s - 1], (2) injective, where n is the dimensionality of the
spatial index domain E 2, {Pi,.. . ,p.} is a subset

where s = IS1, the number of statements in S. of interval domain [1, d], and P, < ... < pn.

Loop Transformer With g and r defined Overall Procedure To summarize, the over-

above, the following function h, called the loop all procedure to obtain a new loop nest is:

transformer, specifies how a loop nest is trans- 1. First generate a schedule ir = (gl, r) to max-
formed: imize the degree of parallelism by using the

h:D x S- El x E 2 X [0,S-11 (3 algorithms presented in [12].

h(I, S) = (g1(I), g2(I), r(S)). 2. Then determine the spatial morphism 92 of
domain morphism based on target machine

Schedule Given h defined above, a schedule 7 characteristics such as memory and proces-

is defined to be a function sor organization, communication cost, etc.,
or use a default function as shown above.

ir:D x S -+ E1 x [0, s- 1) (4) 3. The loop transformer is simply h

7r(I, S) = (g,(I), r(S)), (91,92, r).

such that condition r(J, S2) - 7r(I, Si) >- 6 must 4. Finally perform symbolic program transfor-

hold for all dependences SjUI #- S2AJ in the mation, given the source loop nest and loop

loop nest. The condition ensures that the or- transformer h, to obtain the new loop nest.

dering imposed by dependence relations is pre- For the formal procedure, please refer to [6].

served. Clearly, a schedule determines the se- We now discuss different classes of schedules
quential execution of the transformed parallel which include the exiting schedules in one class.
loop nest. Note that by the definition of domain
morphism, g(J)- 1 (I) can be equal to the zero
vector, i.e. S1@I and S 20J can be computed at 4 Classes of Affine and Piece-
the same iteration in the transformed loop nest. Wise Affine Schedules
In this case, statement S1 must be in front of
statement S2 in the loop body, i.e. condition We call a schedule affine if it is an afline function
r(SI) < r(S 2) must hold, to preserve the depen- of the loop indices. We call a schedule piece-

dence ordering, wise afine if the restriction of the function to

4

each subdomain of D and each subset of S is 3. Mixed schedule (Mixed) if E, can be of dif-
affine. In the loop restructuring literature, only ferent dimensions for each pair of subdo-
affine schedules are considered. In this paper, we main Di and statement subset Si. Such a
consider, in addition, piece-wise affine schedules. mixed schedule will result in transformed

We now classify schedules according to two programs consisting of imperfectly nested
properties: (1) the uniformity of the schedule loops.
with respect to the the set of statements 8 and
the index domain D, and (2) the degree of par- 4.2 Classification and Functional
allelism in the transformed Loop Nest. Form of Schedules

4.1 Properties of Schedules Classification Clearly, the uniformity of r
parti- and the dimensionality of 7r are two orthogonal

Uniformity Let index domain D be <art< properties, except that a mixed schedule cannot
tind nto me dsjt sbmns 1epartite d be uniform. Thus there are all together eleven
m; and let the set of statements , be partitioned (4 * 3 - 1) classes of affine and piece-wise affine
into n disjoint subsets Sk, 1 < k < n. The gen- schedules. The classes and their acronyms rang-
eral form of a piece-wise affine schedule ir defined ing from single-sequential level uniform sched-
in Equation (4) consists of conditional branches, ules to mixed nonuniform schedules are in Fig-
one for each pair of subdomain Di and statement ure
subset Si, and an affine expression of the loop
indices is on the right-hand side of each branch.
We call a schedule Functional Form We now describe the forms

of affine and piece-wise affine schedules by us-
1. uniform if m = 1 and n = 1, ing matrix and vector notations. Let r(S) for a

2. subdomain-variantifm > l and n = 1, (also given S in S be a constant scalar. Let d be the
dimensionality of the index domain of the source

called a subdomain schedule) Iopnetloop nest.

3. statement-variant if m = I and n > 1, or

4. nonuniform if m > 1 and n > 1. Uniform Schedule:

Degree of Generated Parallelism As de- r(I, S) = (TI, r(S)), (5)

fined in Equations (1) and (4), the dimensional- I E D, S E S,
ity of El, the temporal index domain, indicates
the number of levels of sequential loops in the where T is a constant l-by-d matrix and I is the
transformed loop nest. Hence a schedule 7r would sequential level of the schedule 7r.
generate a target loop nest with more levels of
parallel loops and thus potentially more parai- Subdomain Schedule:
lelism if E, is of lower dimensionality. We call
the dimensionality of E, the sequential level of I
r. Schedules can thus be classified as: 1= .. ,

1. Single-sequential level schedule (SSL) if El I E Dm (TmI, r(S)) (6)

is a subset of the set of natural numbers X.
I E D, S E S,

2. Multiple-sequential level schedule (MSL) if
E1 is a subset of /n, where n is a positive where Ti, 1 < i < m, is a constant li-by-d matrix
integer and n < d, the dimensionality of the and li is the sequential level of the part of the
original loop nest. schedule defined over Di.

5

Single-Sequential Multiple-Sequential Mixed

Level (SSL) Level (MSL)

Uniform (U) SSL-U MSL-U

Subdomain (SD) SSL-SD MSL-SD Mixed-SD

Statement-Variant (SV) SSL-SV MSL-SV Mixed-SV

Nonuniform (NU) SSL-NU MSL-NU Mixed-NU

Figure 1: Classes of schedules

Statement-Variant Schedule: ing, permutation and skewing are special cases of

S E S1 -- (T 11, r(S)) MSL uniform schedules.

7r(I, S) = ... $ (7) Example 1: Loop Interchanging and Per-

SE -S, (TI, r(S)) mutation Loop interchanging and loop per-

I E D, S E S, mutation (1, 2, 3, 17, 19] is a process of switching
inner and outer loops. Suppose Loop Nest 1 after

where Ti, 1 < i < n, is a constant li-by-d matrix loop interchanging or loop permutation becomes
and 1i is the sequential level of the part of the Loop Nest 4
schedule defined over Si.

Nonuniform Schedule: DO (i... 1 UPI){

'(I, S)= DO (ipd = lPd, upd){

I E D1 ,S5E S, -~ (TIII, ri(S)) body}1 E D,.,S ES - (T(8,r)(S)) where (PlP2,...,Pd) is a permutation of
I iSI(1, 2, ... , d). Also suppose the m innermost loops
I E D,S E ,, are parallelizable. The schedule ?r has the form:

where Tij, I < i < m and 1 < j < n, is a (IS) (P I
constant lij-by-d matrix and Iii is the sequential
level of the part of the schedule defined over Di V(pi)
and Sj. i.e. T = ... ,and (10)

The linear term TI, I E D, determines the V(Pdm)
form of the sequential loops in the transformed /
loop nest, which includes nesting structures, r(S) = loc(S), (11)

bounds, and possibly additional predicates toguard the loop body. The constant terms r(S) where Ioc is a function from $ to K" that returns
determine the orders of the statements in the the position of the statement S in the source loop
transformed loop body. nest, and each V(k) is a vector of length d with

k-th element being 1 and all other elements being

4.3 Examples of Different Classes of 0.

Schedules Example 2: Loop Skewing This operation
We now give some examples of different classes transforms Loop Nest 1 as follows: shifting index
of schedules. We first show that loop interchang- i, with respect to index Im, 1 m m < n < d,

6

by a factor of f, where f is a positive integer, will transform Loop Nest 6 into
replacing In~ with the expression (In + im * f), Loop Nest 7
replacing un with the expression (un + im *f)
and replacing all occurrences of in in the loop DO (i = 1, n){
with the expression (in - m, * f) [17, 19]. The OL(j nI
transformed loop nest is of the form: DAL(,n

Loop Nest 5 S2 : B(i,)=
DO (ii I, U1)A(i - 1,j)+ j

S, : A(i,j) =

DO (in=ln+ im*f,Un+ im *f){Bij-)i}

... Example 4: MSL Uniform Schedule
DO (id = Id, lid) {Loop Nest 8

loop body with inbeing

replaced by (in - im * f) }) }DO (i n -fl , 1

The schedule for loop skewing is of the form: DO (i= i + 1, n){

rr(I, S)= i,.,m. DO (k = i,){I

in + fm ,......id,100S)), (12) S, : IF(+ 1 =k)
B(i, j, k) = CQi + 1, j, j)

n-th element
V(1) S 2 :IF(i+ 1 <k)

B(i, j,k) = B(i + 1, j, k)

i~e.T Vn)+fV~m , ad (3) S3: IF(i + j + 1 <2k)
Le.T ~n +f V~) nd(1) ij, k) = C(i,j, k- 1) + B(ij,k)})}

V(4) A 2-SL uniform schedule
T(S) = loc(S), (14)7r(ijkS),lc) 16

where loc(S) and V(k) are the same as defined i~~~)S=(-~)bcS) (6
in Example 1. will transform Loop Nest 8 into Loop Nest 9.

Example 3: SSL Uniform Schedule Example 5: Mixed Statement- Variant
Loop Nest 6 Schedule Consider Loop Nest 8 again. The

DO (= 1 n)following schedule transforms Loop Nest 8 to
DO (i= 1,n) ~Loop Nest 10, which consists of imperfectly

DO (j = 1,n){ nested loops:

S, : A(i, j)=
B(ij - 1) +i S 53

S2 : B(i, j) = Tr((i, j, k), S) ((-i, k), bc(S))1 (17)

A(i - 1j) +j else j -i~o(

An SSL uniform schedule -i os)

7r((i,j,k),Sl) = (i,1), and (1)Example 6: SSL Subdomain Schedule
7r((i,j, k), 52) = (i, 0), Another possible transformation of Loop Nest 8

7

Loop Nest 9

DO (i 1-n,-1){

DO (k = -i,n)f

DOALL (j = I-in)

S1 : IF((-i + 1 = k)A(k <j))B(-ij,k) = C(1 -i,j,j)

S2 : IF((-i + 1 < k) A (k < j))B(-i,jk) = B(1 - i.j,k)

S3 : IF((-i+j+ 1 < 2k)A(k <j))C(-i,j,k) =C(-i,j,k- 1)+B(-i,j,k)} })

Loop Nest 10

DO (i= 1 -n,-1){

DOALL ((j = 1 - i, n), (k = -i, n)) {
S: IF((-i+ I = k) A (k < j))B(-i,j,k) = C(- i,j,j)
S2 :IF((-i + I < k) A (k < j)) B(-i, j, k) = B(1 - i, j, k)}

DO (k= -i,n){

DOALL (j = I- i, n){

S3 : IF((-i+ j + 1 < 2k) A (k < j)) C(-i,j, k) = C(-i,j, k - 1) + B(-i,j, k) } }

Loop Nest 11

DO (t = 2,2n- 2){

DOALL (i= n- 1,1,-1){

DOALL (j = i + 1,n){

S11 : IF((2t+3i-3j >0) A(t+i-j- 1=0))

B(i,j,f + 2i- j) = C(i + 1,j,j)

S12: IF((2t + 3i - 3j 0) A (i + 2i- 2j + =0))

B(ij, -t - i + 2j) = C(i + 1,j,j)

S21 : IF((2t+3i-3j>0) A(t+i-j-1 >0))

B(i,j,t+2i-j)=B(i+l,j,t+2i-j)

S22 : IF((2t + 3i - 3j 0) A (t + 2i - 2j + 1 <0))

B(ij, -t - i + 2j) = B(i + 1,j, -t - 2i + 2j)

S31 : IF((2t + 3i - 3j > 0) A (2t + 3i - 3j - 1 > 0))

C(i,j, t + 2i - j) = C(i,j, i + 2i - j - 1) + B(ij, t + 2i - j)

S32: IF((2t+3i-3j>0) A(2t+3i-3j+1 <0))

C(i,j, -t - i + 2j) = C(i,j, -t - i + 2j - 1) + B(i,j, -t, -i + 2j) } })

8

is the schedule: same problem. The three schedules are given be-
low. For simplicity, we do not give the constant

i + -2k<0-.terms r(S) of function ir.
7r((, j k) S) (-2i + j + k, loc(S)) ,'(18)

i + - 2k > 0 - 2-SL uniform schedule: (19)

I(-i + 2j - k, lo(S)) 7r(S, (i, k)) = (i - i, k - i)

which transforms Loop Nest 8 into Loop Nest I. mixed statement-variant schedule:

Since there are two affine functions for disjoint S = Sc2 (
subdomains of the index domain of the loop nest, r(S,(i,j,k)) (- i,k - i) (20)

each statement in Loop Nest 8 results in two
guarded statements in the transformed loop nest. else - i

In fact Loop Nest 8 is part of the dynamic pro- SSL subdomain schedule:
gramming code presented in Section 5. As one
can see, an SSL subdomain schedule can result +. -k<0

in code of considerable complexity. It would be (i, j, k)) -2i + j + k (21)
a very tedious and error-prone process for a user i(+)j - 2k > 0
to write the code by hand. But a compiler can -k
generate the new loop nest, given the schedule, - i + 2j J
and the original loop nest mechanically.

Experimental Result lIne experiment is
conducted as follows: we run the sequential code
on the Symbolics and parallel codes on an 8K-

Programming processor Connection Machine with Symbolics

as its host. The results described in Figure 2
To illustrate the usefulness of the more general and Figure 3 show that the version using an SSL
schedules, we take dynamic programming as an subdomain schedule is three orders of magnitude
example, which has sequential complexity 0(n 3) faster than the sequential code, and is two or-
for a problem of size n. The source code is given ders of magnitude faster than the versions using
in Loop Nest 12. a 2-SL uniform schedule and mixed statement-

Loop Nest 12 variant schedule. And the program using a
mixed statement-variant schedule is about three

DO (i = 1, n - 2) { to four times faster than the program using a

DO (j = i + 2, n) { 2-SL uniform schedule.

C(i,j) = minj<k<"

(h(C(i,k),C(k,j)))} } 6 Concluding Remarks

This source program is first transformed in a We present in this paper a formal mathemat-
systematic manner by applying fan-in and fan- ical framework which unifies the existing loop
out reductions [5] to reduce potential concur- transformations. We also present more general
rent accesses of variables. The result is Loop affine and piece-wise affine schedules which can
Nest 13. Then the code is transformed into extract more parallelism from a class of pro-
three *lisp programs on the Connection Machine grams than the existing techniques. The partic-
CM/2, each with the control structure generated ular class of programs are those that consist of
by a 2-SL uniform schedule, a mixed statement- perfectly nested loops possibly with conditional
variant schedule and an SSL subdomain schedule statements where the guards as well as the ar-

respectively. We also have a sequential Common- ray index expression are affine expressions of the
Lisp program on the Symbolics to compute the loop indices. Although the complexity for ob-

9

Loop Nest 13

DO (i = n - 1,1, -1)

DO (j = i+ 1,n){

m = (i+j + 1)/2

DO (k = i,j) {

Sai IF(k < j)A(ij,k)= A(i,j- 1,k)

Sbl: IF(i+ I = k) B(ij,k)= C(i + 1,j,j)

Sb2 IF(i + 1 < k)B(ij,k) = B(i + 1,j,k)

S, :IF(m = k) C(i,j, k) = h,(A(i,j, k), B(i,j, k),

A(i,j,i + j - k),B(i,j,i + j - k))

S12 : IF(m < k < j)C(i,j,k) = h2(C(i,j,k - 1),A(i,j,k),

B(i,j,k),A(i,j,i+ j - k),B(i.j,i+ j - k))

Sea :IF(k = j)C(i,j,k) = C(i,j,k- 1)

Sa2 IF(k = j)A(i,j,k) = C(i,j,k) 1)1

n 3-SL sequential 2-SL uniform mixed statement-variant SSL subdomain

32 6.8 10.72 2.47 0.87

64 55.0 42.88 9.73 1.73

128 440.0 171.50 39.16 3.48

256 3520.0 686.45 235.70 6.96

512 28160.0 2745.80 1159.24 31.70

Figure 2: Running time in seconds.

10000 a: n = 32
d b: n = 64

c: n = 128 Pe
e: n =512 0

1000- d: n = 256 / uniform bd-e
Time(sec)

C

100 0c statement!'
b 0b variant -

/

10 Ea ta ,ob

1 , subdomain

8 64 512 4,8K 32K 256K
Virtual Processors Used

Figure 3: Running time vs. problem sze.

10

taining these more general schedules is high [12], [9] R.M. Karp, R.E. Miller, and S. Winograd.
we show that the generated code derived from The organization of computations for uni-
a new schedule can be two orders of magnitude form recurrence equations. Journal of the
faster than the version from the existing trans- ACM, 14(3):563-590, July 1967.
formations. For programs not in this particu-
lar class, e.g. programs with pointers, compiler [10] S.Y. Kung, K.S. Arun, R.J. Gal-Ezer, and

directives can be added into the sequential pro- D.V.B. Rao. Wavefront array processor:

grams to help the compiler to generate efficient Language, architecture, and applications.

parallel codes. IEEE Trans. on Computers, 31(11):1054-
1066, November 1982.

References [11] L. Lamport. The parallel execution of
DO loops. Communications of the ACM,

[1] J.R. Allen. Dependence Analysis for Sub- 17(2):83-93, February 1974.
script Variables and Its Application to Pro- [12] L.C. Lu and M.C. Chen. New loop transfor-
gram Transformation. PhD thesis, Rice mation techniques for massive parallelism.
University, April 1983. Technical Report TR-833, Yale University,

[2] J.R. Allen and K. Kennedy. Automatic October 1990.
trans!ation of fortran programs to vector
form. ACM Trans. on Programming Lan- [13] W.L. Miranker and A. Winkler. Spacetime
guages and Systems, 9(4):491-542, October representations of computational struc-
1987. tures. In Computing, volume 32, pages 93-

114, 1984.
[3] U. Banerjee. A theory of loop permutation.Technical report, Intel Corporation, 1989. [14] D.1. Moldovan. On the design of algorithms

for VLSI systolic arrays. Proceedings of the
[4] U. Banerjee. Unimodular transformations IEEE, 71(1), 1983.

of double loops. In Proc. 3rd Workshop on
Programming Languages and Compilers for [15] P. Quinton and V.V. Dongen. The mapping

Parallel Computing. UC. Irvine, 1990. of linear recurrence equations on regular ar-
rays. Technical Report 485, INRIA-Rennes,

[5] M.C. Chen. A design methodology for syn- July 1989.
thesizing parallel algorithms and architec-
tures. Journal of Parallel and Distributed [16] M.E. Wolf and M.S. Lam. Maximizing par-

Computing, December 1986. allelism via loop transformations. In Proc.
3rd Workshop on Programming Languages

[6] M.C. Chen, Y. Choo, and J. Li. Coin- and Compilers for Parallel Computing. UC.
piling parallel programs by optimizing per- Irvine, 1990.
formance. The Journal of Supercomputing,
1(2):171-207, July 1988. [17] M. Wolfe. Optimizing Supercompilers for

Supercnmputers. PhD thesis, University
[7] J.M. Delosme and I.C.F. Ipsen. Systolic of Illinois at Urbana-Champaign, October

array synthesis: Computability and time 1982.
cones. Technical Report RR-474, Yale Uni-
versity, 1986. [18] M. Wolfe. More iteration space tiling. In

Proc. Supercomputing '89, November 1989.
[8] F. Fernandez and P. Quinton. Extension of

Chernikova'F algorithm for solving general [19] M. Wolfe. Optimizing Supercompilers for
mixed linear programming problems. Tech- Supercomputers. The MIT Press, 1989.
nical Report 437, INRIA-Rennes, October
1988.

11

